Whole-body hyperthermia provides biphasic cardioprotection against ischemia/reperfusion injury in the rat.

نویسندگان

  • N Yamashita
  • S Hoshida
  • N Taniguchi
  • T Kuzuya
  • M Hori
چکیده

BACKGROUND Hyperthermia increases cardiac tolerance to ischemia/reperfusion injury 24 hours after the heat stress. Free radicals and redox mechanisms have been implicated in such tolerance. However, the time course and its relation to the induction of antioxidative enzymes in the protection induced by whole-body hyperthermia against ischemia/reperfusion injury are unknown. METHODS AND RESULTS Hyperthermia was induced in anesthetized rats by placement in a temperature-controlled water bath. After the defined recovery interval(s) at room temperature, ischemia was induced by occlusion of the left coronary artery for 20 minutes, followed by reperfusion for 48 hours. The exposure to hyperthermia led to a recovery interval- dependent, biphasic reduction in the incidence of ventricular fibrillation during ischemia and in the size of the myocardial infarct as determined after 48 hours of reperfusion. The time course of the late-phase (24- to 96-hour recovery interval) but not the early-phase (0.5 hour) cardioprotection depended on the degree of hyperthermia. The time course of the increase in myocardial manganese superoxide dismutase (Mn-SOD) activity corresponded to that of the cardioprotective effects, although an increase in the content of Mn-SOD and of heat shock protein 72 corresponded only to the late-phase effects. Administration of an antioxidant before hyperthermia abolished the early- and late-phase cardioprotection and the increase in Mn-SOD activity. CONCLUSIONS THe activation of Mn-SOD mediated by free radical production during hyperthermia is important in the acquisition of early-phase and late-phase cardioprotection against ischemia/reperfusion injury in rats.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of cytokines in the mechanism of whole-body hyperthermia-induced cardioprotection.

BACKGROUND Hyperthermia increases cardiac tolerance to ischemia/reperfusion injury and activates manganese superoxide dismutase (Mn-SOD), an intrinsic radical scavenger, in myocardium in a biphasic manner. Tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) induced a biphasic cardioprotection that corresponded to the activation of Mn-SOD. However, a direct association betwe...

متن کامل

The Role of Exercise Preconditioning in Cardioprotection against Ischemia Reperfusion Injury

Cardiovascular diseases are still the main cause of mortality around the world. Therefore, it is essential to develop practical means to reduce their burden. A wealth of evidence supports the role of physical exercise in attenuating many of the risk factors of cardiovascular diseases. Moreover, endurance training warrants protection against myocardial infarction. Exercise, even if performed ...

متن کامل

Single oral dose of geranylgeranylacetone induces heat-shock protein 72 and renders protection against ischemia/reperfusion injury in rat heart.

BACKGROUND Induction of heat-shock proteins (HSPs) results in cardioprotection against ischemic insult. Geranylgeranylacetone (GGA), known as an antiulcer agent, reportedly induces HSP72 in the gastric mucosa and small intestine of rats. The present study tested the hypothesis that oral GGA would induce HSP72 in the heart and thus render cardioprotection against ischemia/reperfusion injury in r...

متن کامل

Investigating the role of acute and repeated stress on remote ischemic preconditioning-induced cardioprotection

Objective(s): To study the effect of acute and repeated stress on cardioprotection-induced by remote ischemic preconditioning (RIPC).Materials and Methods: RIPC was induced by giving 4 short cycles of ischemia and reperfusion, each consisting of five min. The Langendorff’s apparatus was used to perfuse the isolated rat hearts by subjecti...

متن کامل

Exercise Provides Direct Biphasic Cardioprotection via Manganese Superoxide Dismutase Activation

Epidemiologic investigations have shown that exercise reduces morbidity and mortality from coronary artery disease. In this study, using a rat model, we attempted to determine whether exercise can reduce ischemic injury to the heart and elucidate a mechanism for the cardioprotective effect of exercise. Results showed that exercise significantly reduced the magnitude of a myocardial infarction i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation

دوره 98 14  شماره 

صفحات  -

تاریخ انتشار 1998